Nature Communications 2017

In May 2017, Matthew MakowskiMichiel Vermeulen (Radboud University, Nijmegen, The Netherlands) and collaborators published a paper in Nature Communications.

 

Fang J, Jia J, Makowski M, Xu M, Wang Z, Zhang T, Hoskins JW, Choi J, Han Y, Zhang M, Thomas J, Kovacs M, Collins I, Dzyadyk M, Thompson A, O'Neill M, Das S, Lan Q, Koster R; PanScan Consortium; TRICL Consortium; GenoMEL Consortium, Stolzenberg-Solomon RS, Kraft P, Wolpin BM, Jansen PWTC, Olson S, McGlynn KA, Kanetsky PA, Chatterjee N, Barrett JH, Dunning AM, Taylor JC, Newton-Bishop JA, Bishop DT, Andresson T, Petersen GM, Amos CI, Iles MM, Nathanson KL, Landi MT, Vermeulen M, Brown KM, Amundadottir LT. Functional characterization of a multi-cancer risk locus on chr5p15.33 reveals regulation of TERT by ZNF148. Nat Commun. 2017 May 2;8:15034. doi: 10.1038/ncomms15034.

 

Abstract

Genome wide association studies (GWAS) have mapped multiple independent cancer susceptibility loci to chr5p15.33. Here, we show that fine-mapping of pancreatic and testicular cancer GWAS within one of these loci (Region 2 in CLPTM1L) focuses the signal to nine highly correlated SNPs. Of these, rs36115365-C associated with increased pancreatic and testicular but decreased lung cancer and melanoma risk, and exhibited preferred protein-binding and enhanced regulatory activity. Transcriptional gene silencing of this regulatory element repressed TERT expression in an allele-specific manner. Proteomic analysis identifies allele-preferred binding of Zinc finger protein 148 (ZNF148) to rs36115365-C, further supported by binding of purified recombinant ZNF148. Knockdown of ZNF148 results in reduced TERT expression, telomerase activity and telomere length. Our results indicate that the association with chr5p15.33-Region 2 may be explained by rs36115365, a variant influencing TERT expression via ZNF148 in a manner consistent with elevated TERT in carriers of the C allele.