FEBS Journal 2015

May 1st 2015, Matthew Makowski and Michiel Vermeulen (Radboud University, Nijmegen, The Netherlands) and collaborators published a paper in FEBS Journal:

 

Kloet SL, Baymaz HI, Makowski M, Groenewold V, Jansen PW, Berendsen M, Niazi H, Kops GJ, Vermeulen M. Towards elucidating the stability, dynamics and architecture of the nucleosome remodeling and deacetylase complex by using quantitative interaction proteomics. FEBS J. 2015 May;282(9):1774-85. doi: 10.1111/febs.12972.

                                                                 

 

Abstract

The nucleosome remodeling and deacetylase (NuRD) complex is an evolutionarily conserved chromatin-associated protein complex. Although the subunit composition of the mammalian complex is fairly well characterized, less is known about the stability and dynamics of these interactions. Furthermore, detailed information regarding protein-protein interaction surfaces within the complex is still largely lacking. Here, we show that the NuRD complex interacts with a number of substoichiometric zinc finger-containing proteins. Some of these interactions are salt-sensitive (ZNF512B and SALL4), whereas others (ZMYND8) are not. The stoichiometry of the core subunits is not affected by high salt concentrations, indicating that the core complex is stabilized by hydrophobic interactions. Interestingly, the RBBP4 and RBBP7 proteins are sensitive to high nonionic detergent concentrations during affinity purification. In a subunit exchange assay with stable isotope labeling by amino acids in cell culture (SILAC)-treated nuclear extracts, RBBP4 and RBBP7 were identified as dynamic core subunits of the NuRD complex, consistent with their proposed role as histone chaperones. Finally, using cross-linking MS, we have uncovered novel features of NuRD molecular architecture that complement our affinity purification-MS/MS data. Altogether, these findings extend our understanding of MBD3-NuRD structure and stability.